If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+27x-162=0
a = 1; b = 27; c = -162;
Δ = b2-4ac
Δ = 272-4·1·(-162)
Δ = 1377
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1377}=\sqrt{81*17}=\sqrt{81}*\sqrt{17}=9\sqrt{17}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(27)-9\sqrt{17}}{2*1}=\frac{-27-9\sqrt{17}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(27)+9\sqrt{17}}{2*1}=\frac{-27+9\sqrt{17}}{2} $
| 8x+23=3x+173 | | 3x+23=11x/65 | | 3x+23=11x–65 | | (X^2+1)(x-12)=0 | | 5–6x=17 | | 9y^2+0,27y=0 | | 1/6x+2=10 | | ⅔*x-2=4 | | ⅔·x-2=4 | | 7x-3=-x+21 | | x2−5=14 | | 4x+15+5=24+2x | | √z=10.5 | | 3x+5+2x=25+10 | | 2x+12=-24-x | | 100.000=10a | | 3x—7=x+5 | | x-48-90=180 | | y=1/4=-2 | | -5=19-7/x | | x)(x+6)=91 | | 33-x=12 | | 9x+5=5x+19 | | 41-3v=2v+6 | | 10y-2=46 | | 2z+6=3z-13 | | 367=r−372 | | 845=n+273 | | v+261=963 | | 5y-11=2y+9 | | 21=t+8 | | g+141=186 |